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ABSTRACT
Off-chain protocols (layer 2) are a promising solution to the
scalability and privacy challenges of blockchain systems. In
off-chain channels, the core idea is that state changes between
two complying parties need not be published. Instead, on-chain
computation is only required when the parties are in dispute; in
this case the blockchain takes the role of a trusted third party.
Current proposals, however, require a synchronous network
to preserve the safety of the channel, leaking to an adversary
the exact amount of time needed to control the network for an
attack. This problem is exacerbated when lifting the assumption
of a perfect blockchain substrate, as low chain quality (i.e. cen-
sorship probability) or congestion can break the assumption
that dispute resolution transactions will appear on-chain in time
even if the network is perfect.

In this paper, we introduce BRICK, the first off-chain con-
struction that remains secure under full asynchrony. The core
idea is to incorporate the conflict resolution process within the
off-chain channel by introducing a watchtower committee. Ev-
ery state update is consistently broadcast to the committee after
approval. Hence if a party wants to unilaterally close a channel
it can only get the committee’s approval for the valid state. Fur-
thermore, we consider the permissioned model of blockchains
where the additional property of audibility might be desired for
regulatory purposes and introduce BRICK+ an off-chain con-
struction that can provide auditability on top of BRICK without
conflicting with its privacy guarantees. We formally define the
properties our state-channel construction should fulfill, prove
them for BRICK and BRICK+, and design incentives for the
committee such that honest and rational behavior align.

1 INTRODUCTION
As every node of a permissionless blockchain must learn and
validate every single transaction, the throughput is often too low.
So far, the most promising approach to solve the throughput
bottleneck are so-called channels [17, 44, 50]. The idea is that
any two parties that interact (often) with each other will set up
a joint channel. Instead of sending payments between the two
parties to the blockchain, the two parties will simply accumulate
their cryptographically signed payments. The blockchain will
only be used to settle a conflict between the two parties, or to
close the channel if it is not needed anymore. In other words,
after establishing a channel, all transactions between the two
parties will happen off-chain. The blockchain will only be used
as a fail-safe mechanism in case of disputes.

The security guarantees of a channel are ensured by the
on-chain dispute handling mechanism. To briefly explain the
mechanism, each party in a channel maintains a local view of
the most recent channel state, with signatures. If a party aborts
(or provides invalid data), the counter party must publish the
most recent signed state to the blockchain to initiate the dispute

process. To handle the case where a malicious party initiates a
spurious dispute, the other party is given a fixed time period to
resolve the dispute. This is effective as long as honest parties re-
main online and responsive; a node that crashes or goes offline
for an extended period of time may miss the time window to
participate in the dispute process. This design, however, has a
significant shortcoming as it assumes a perfect blockchain that
will correctly handle disputes [28]. Unfortunately, this is not
a valid assumption. Malicious parties can try to censor trans-
actions1 from an honest party during the dispute period [38].
Proposals such as Monitors [20], Watchtowers [1, 5] or Cus-
todians [37] do not help in such a case as they can suffer the
exact same censoring as the honest client.

In this work we propose BRICK, a novel state channel con-
struction that does not rely on any assumption for the delivery
of messages to be secure. As a result it can guarantee the cor-
rectness of the channels even under censorship or execution
fork attacks [29]. The core idea of BRICK is to enable the
participants of the payment channel to outsource the dispute
arbitration to an external committee (e.g. a group of watchtow-
ers). As a result, in BRICK, if there is a dispute, the committee
will make sure the correct state is the only one available for
submission on-chain regardless of the amount of time it takes
to make this final state visible. Additionally, our construction
protects from inactive committees in the cases that the parties
agree as they can exit the channel in consensus without the
approval of the committee.

A secondary shortcoming of channels is that they forfeit au-
ditability of the updates in the channel in order to provide some
weak notion of privacy [28], which makes channels unsuitable
for any kind of regulated process [53] such as supporting a real
currency. In this work, we resolve this problem with BRICK+,
by further leveraging the committees to provide audibility of
channels. We construct the channel’s state update to form an
internal hash-chain which the committee stores. In order to pre-
serve privacy, state updates are hashed and only then presented
to the committee. Essentially, the committee maintains a hash
which is the head of the hash-chain of the state history. In order
to provide accountability for the auditor we require that the
auditor posts the access request on-chain [31]. Only then will
the committee provide the auditor the necessary metadata to
verify the state history he will receive from the parties of the
channel.

To evaluate our channel construction we initially define prop-
erties that a channel solution should have to be consistent with
the blockchain guarantees, specifically safety and liveness. Ad-
ditionally, our construction protects the privacy of the channel’s
parties from external adversaries that are not authorized to ac-
cess it. Finally, we study the reward allocation for the external

1This censoring ability is encompassed by the chain-quality property [26] of
blockchain systems which is rightly bound to the synchrony of the network.
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committee and present an incentive mechanism that ensures
the honest behavior of rational committee members, which
in turn ensures that our payment channel construction is se-
cure. Similarly, we show how to align the incentives of rational
participants with our expected honest behavior.

In summary, this paper makes the following contributions:
• We introduce BRICK, the first off-chain construction that

remains secure under asynchrony and offline channel
participants.

• We introduce BRICK+, a modification on BRICK chan-
nel construction, that enables external auditors to law-
fully request access to the channels history while main-
taining privacy.

2 BACKGROUND AND PRELIMINARIES
In this section we present the necessary introduction to state
channels that are designed to scale blockchains. Furthermore,
we introduce the necessary distributed abstractions and crypto-
graphic primitives that our constructions builds upon.

2.1 Blockchain Scalability & Layer 2
One of the major problems of blockchain protocols is the lim-
ited transaction throughput that is associated with the underly-
ing consensus mechanism, originally introduced in Bitcoin [40].
Nakamoto consensus demands that every participant of the sys-
tem verifies and stores a replica of the entire history of transac-
tions, i.e. the blockchain, to guarantee the safety and liveness
of the transaction ledger. However, this requirement leads to
blockchain systems with limited block size and block creation
time; if we increase size or decrease time, we implicitly enforce
participants to verify and store more data which in turn leads
to centralization and additional advantages for participants that
invest in more infrastructure. Thus, blockchain systems that
use the Nakamoto or similar consensus mechanisms, face a
scalability problem. Particularly, Bitcoin handles at most seven
transactions per second [14] while current digital monetary
systems, such as Visa, handle tens of thousands.

Proposed solutions for the throughput limitation of blockchain
systems can be categorized in two groups: on-chain solutions
that attempt to create faster blockchain protocols [4, 16, 32,
33, 49], and off-chain solutions that use the blockchain only as
a fail-safe mechanism and move the transaction load offline,
where the bottleneck is the network speed. While on-chain
solutions lead to the design of new promising blockchain sys-
tems, they typically require stronger trust assumptions and they
are not applicable to existing blockchain systems (without a
hard fork). In contrast, off-chain (layer 2) solutions are built
on top of the consensus layer of the blockchain and operate
independently. Essentially, off-chain solutions allow two par-
ties2 to create a “channel” on the blockchain through which
they can transact fast and secure; this solution is known as
payment channel, originally introduced by Spilman [50], and
made bidirectional by [17, 44].

Payment channels allow transactions between two parties
to be executed instantly off-chain while maintaining the guar-
antees of the blockchain. Essentially, the underline blockchain

2Note that a channel can also be created between multiple parties [9].

acts as a “judge” in case of fraud. There are multiple proposals
on how to construct payment channels [15, 17, 44, 50], but all
proposals share the same core idea: the two parties create a
joint account on the blockchain (funding transaction), and ev-
ery time the parties want to make a transaction they update the
distribution of the capital between them accordingly and they
both sign the new transaction as if it would be published on the
blockchain (update transaction). To close the channel, a party
publishes the latest update transaction either unilaterally or in
collaboration with the counter-party with a closing transaction.

The various proposals differ in the way they handle disputes,
i.e. the case where one of the parties misbehaves and attempts to
close the channel with a transaction that is not the latest update
transaction, and as such violating the safety property. Lightning
channels [44] penalize the misbehaving party by assigning the
money of the channel to the counter-party in case of fraud. To
achieve this, every time an update transaction is signed, each
party gives a signed transaction to the counter-party that enables
the counter-party to claim the money of the channel in case the
party publishes the previous update transaction, as some form
of breach remedy. However, this transaction is valid only for
a window of time, since the party should, in case of no fraud,
eventually be able to spend his money from the channel. This
dispute period is enforced with a (relative) timelock. On the
other hand, Duplex channels [17] guarantee that the latest up-
date transaction will become valid before any previous update
transaction, again utilizing timelocks. In both cases, the live-
ness of the underline blockchain and timelocks are crucial to
the safety of the payment channel solution. Additionally, both
solutions require online participants that constantly monitor the
blockchain to ensure safety.

To extend the concept of payment channels on an arbitrary
state, state channels were introduced [39]. Several recent con-
structions exist in this direction [13, 22, 39]. In contrast with
these works, we focus on designing a safe state channel proto-
col that is asynchronous, i.e. does not require timelocks, which
can be used later as a brick in any of these constructions.

2.2 Consistent Broadcast
Consistent broadcast [45] is a distributed protocol run by a
node that wants to reliably send a message to a set of peers.
It is called consistent because it guarantees that if a correct
peer delivers a messagem with sequence number s and another
correct peer delivers messagem′ with sequence number s, then
m =m′. Thus, the sender cannot equivocate. In other words, the
protocol maintains consistency among the actually delivered
messages with the same sender and sequence numbers, but
makes no provisions that any parties do deliver the messages.
In our system we only care about consistency of sequence
numbers, as any party of the channel can be the sender of a
message m even after m is correctly broadcast. We allow this
in order to remove the need for parties to share the proofs, as
there is no incentive to do so. The basic communication pattern
of consistent broadcast can be seen in Figure 1.
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Figure 1: Consistent broadcast communication pattern:
The party Pi will use consistent broadcast to send the new
message and sequence number to the committee. If enough
committee members acknowledge (e.g. 3 out of 4) then Pi
holds enough proof that the message will persist. Anyone
willing to get the same information can either ask Pi or
run the same protocol.

2.3 Cryptographic Secret Sharing
Secret Sharing. The notion of secret sharing was introduced
independently by Blakely [6] and Shamir [47] in 1979. An
(t ,n)-secret sharing scheme, with 1 ≤ t ≤ n, enables a dealer
to share a secret a among n trustees such that any subset of t
honest trustees can reconstruct a whereas smaller subsets can-
not. Thus, a sharing scheme can withstand up to t − 1 malicious
participants.

In the case of Shamir’s scheme, the dealer evaluates a degree
t − 1 polynomial s at positions i > 0 and each share s(i) is
handed out to a trustee. The important observation here is that
only if a threshold of t honest trustees collaborates then the
shared secret a = s(0) can be recovered (through polynomial
interpolation).

Verifiable Secret Sharing. The downside of these simple se-
cret sharing schemes is that they assume an honest dealer which
might not be realistic in some scenarios. Verifiable secret shar-
ing (VSS) [12, 24] adds verifiability to those simple schemes
and thus enables trustees to verify if the shares distributed by a
dealer are consistent, that is, if any subset of a certain threshold
of shares reconstructs the same secret.

Distributed Key Generation. A Distributed Key Generation
(DKG) protocol removes the dependency on a trusted dealer
from the secret sharing scheme by having every trustee run a
secret sharing round. In essence, a (n, t) DKG [30] protocol
allows a set of n servers to produce a secret whose shares
are spread over the nodes such that any subset of servers of
size greater than t can reveal or use the shared secret, while
smaller subsets do not have any knowledge about the secret.
Pedersen proposed the first DKG scheme [43] based upon
the regular discrete logarithm problem without any trusted
party. We provide a summary of how Pedersen DKG works in
Appendix A, and optionally modify it to meet our consensus
needs below.

2.4 Consensus
The Byzantine Generals’ Problem [35, 42] is a more powerful
primitive than the consistent broadcast protocol where a group

of n processes in a distributed system reaches agreement on a
value (which requires termination, unlike consistent broadcast).
In BRICK the processes only need to decide whether or not to
close a channel, hence we only care for the restricted problem of
binary consensus in which the input is binary. Pease et al. [42]
show that 3f +1 participants are necessary to be able to tolerate
f arbitrary faulty processes and still reach consensus.

It is well known that reaching consensus in full asynchrony
with a single process crashing is impossible with a deterministic
protocol [25] (FLP), hence we need to introduce some stronger
assumption for BRICK to be functional when consensus is
needed. In this section, we introduce the types of consensus
algorithms we can deploy in BRICK, which do not affect the
safety of the system under full asynchrony (unlike existing
channel constructions), but only rely on stronger assumptions
for liveness.

Partially Synchronous Consensus. Consensus is achievable
despite the FLP impossibility result by adding timing assump-
tions. For this variant of consensus, we need to assume there
is a time GST (General Stabilization Time) after which all
messages among correct replicas arrive within a known bound
∆. The system can swing between periods of synchrony and
asynchrony but termination of consensus in only guaranteed
during the periods of synchrony. The first practical protocol
is [11], but dozens of other protocols exist, e.g., [2, 32].

Randomized Asynchronous Consensus with Trusted Setup.
A second way to circumvent the FLP impossibility is to intro-
duce randomization so that consensus is reached with prob-
ability 1, but there can still exist a non-terminating run with
probability 0. The most efficient of these protocols assume a
strong shared coin meaning that all processes return the same
random number when they flip the coin. In this setting, we can
use VABA [3] as it is the most scalable protocol to date with
O(n2) communication complexity.

It is noteworthy that the only existing constructions that
implement a strong common coin require cryptographic as-
sumptions and a trusted setup [10]. Next, we show how to
circumvent the trusted assumption by assuming a perfect fail-
ure detector and aborting the setup in case any process fails.
This is a more acceptable assumption than the trusted setup in
our setting as the job of the committee that will reach consensus
is to always be live. Therefore, if a committee fails during setup,
then BRICK can use it as an indicator to use another committee.

Given this assumption, we can run a modified synchronous
distributed key generation protocol by Genarro et al. [27] to pro-
duce a common coin. The details are in Appendix A. In short,
we set N = 3f + 1, t = 2f + 1 in [27] and wait for all partici-
pants to reply within ∆ (instead of waiting for N − f responses)
or fail the protocol. If the protocol finishes then a correct shared
private-key is generated. This can be used to produce an un-
limited number of deterministic threshold signatures (BLS [7]
or RSA [48]) which can be used as common-coins [10]. The
caveat of our protocol is that it fails even with one crashed com-
mittee member. However, since the main job of the committee
is to be available at all times, failure to do so during setup is a
good indicator to replace the committee member.
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Modified Liveness argument for setup. In [27] the liveness
of the system holds even if f participants crash since the system
only needs f +1 honest replies before terminating. Furthermore,
the safety of the DKG is guaranteed since the reconstruction
threshold is t = f + 1 and synchrony is also assumed during
reconstruction. Hence, the f + 1 honest nodes are guaranteed
to reply.

In BRICK we convert the protocol to support a fully asyn-
chronous reconstruction phase. There we run into the problem
that if our setup is asynchronous, we can only wait for 2f + 1
nodes to reply before terminating, however f of those might
be malicious. This means that during the reconstruction of the
common coin there is no guarantee that there will be t = 2f + 1
honest nodes holding valid shares and as a result liveness of the
common coin is not guaranteed.

This is the underlying reason of our strong availability as-
sumption during setup. We need to know that there are 2f + 1
nodes that hold valid shares. As a result we need to wait for all
3f + 1 nodes to accept their shares before terminating the setup.
If BRICK’s setup is done correctly we know that later on there
will be 2f + 1 honest share holders (since at most f lied during
setup) and when their shares are eventually delivered, then the
common coin will be correctly reconstructed.

Randomized Asynchronous Consensus. If we do not want
to make the assumption of a live setup nor of partial synchrony,
BRICK resorts to reaching randomized asynchronous consensus
using Bracha [8]. The expected time of this protocol is expo-
nential with regard of the number of participants. In our case
consensus is run rarely (usually once per channel at closing
time), hence the overhead might be acceptable, especially if the
size of the committee is small.

3 PROTOCOL OVERVIEW
In this section we present the system and threat model we
consider, a high level overview of BRICK and BRICK+ together
with the goals we want to achieve.

3.1 System Model
We make the usual cryptographic assumptions: the participants
are computationally bounded and that cryptographically-secure
communication channels, hash functions, signatures and en-
cryption schemes exist. We assume the underlying blockchain
maintains a distributed ledger that has the properties of per-
sistence and liveness as defined in [26]. However, we do not
require a “perfect” blockchain system, since BRICK can toler-
ate temporary extreme conditions. Specifically, if an adversary
can temporarily violate the blockchain liveness property, this
will effect in violating payment channels liveness property and
will not affect the safety of the payment channel construction.

3.2 Threat Model
We initially assume honest participants in the channels to sim-
plify the security analysis. However, later, we show that the
security analysis holds even under rational channel parties that
intentionally deviate from the protocol if they can increase their
profit. Regarding the committee, we assume that there are at
most f out of n = 3f + 1 Byzantine nodes and we define a

threshold t = 2f + 1 to achieve the liveness and safety prop-
erties. The non-Byzantine part of the committee is assumed
honest when proving the desired properties, nevertheless, we
later incentivize this honest behavior for rational committee
members.

3.3 BRICK Overview
All parties agree on a committee before opening a channel. The
committee members commit their identities on the blockchain
during the funding transaction of the channel (opening of the
channel). After opening the channel on the blockchain, the
channel can only be closed either by a transaction published
on the blockchain and signed by all parties or by a transaction
singed by one of the parties and a fraction of the committee
members. Thus, the committee acts as power of attorney for
the parties of the channel.

Every time a new update state occurs in the channel, every
party runs a consistent broadcast protocol with the members of
the committee. Specifically, he announces to the committee that
a new update has occurred. This announcement (defined below)
is first signed by all the participants of the channel to signal
that they are in consensus and (a) consists of a commitment to
the state in order to preserve privacy and (b) is associated with
a monotonically increasing sequence number to guarantee that
this update is the most fresh state. If the consistent broadcast
protocol succeeds (t nodes acknowledge reception) then this
can serve as proof for all parties that the state-update is safe.
After this procedure terminates correctly all parties proceed to
the execution of the off-chain state.

In case a party wants to close the channel in collaboration
with the committee, the members of the committee run a con-
sensus protocol to ensure there is no concurrent update state. If
the consensus is successful then the committee members sign
the closing state and send it to the party, otherwise they validate
the new update state.

3.4 BRICK+ Overview
BRICK+ is designed to enable payment channels in a permis-
sioned, regulated setting, for example a centrally-banked cryp-
tocurrency. In such a setting, there will be an auditor (e.g. the
IRS) that can check all the transactions inside a channel as
these transactions might be taxable. This is a realistic case as
the scalability in payment channels come from persistent rela-
tionship that model well B2B and B2C relationships that are
usually taxed. In this setting, we assume that the auditor can
punish the parties and the committee externally of the system,
hence our goal is to enhance transparency even if misbehavior
is detected retroactively.

In order to convert BRICK into BRICK+ we need to make
sure (a) that nothing happens without the committee’s approval
and (b) that a sufficient audit trail is left on-chain to stop regu-
lators from misbehaving. We resolve the first issue by disabling
the ability for the parties to close the channel without the par-
ticipation of the committee and by additionally having the com-
mittee to store the a hash-chain of the state history. To enable
prevent the auditor from misbehaving, we force him to post a
“lawfull access request” [23] on-chain in order to convince the

4



parties of the channel to initiate the closing of the channel for
audit purposes and send him the state history. To incentivize
the committee to participate, this access request comes with
additional closing fees for the committee members who send
to the audit smart contract the head of the hash-chain.

3.5 Reward Allocation & Collateral
To avoid bribing attacks, we enforce the committee members
to lock a collateral in the channel. The necessary amount of
collateral is discussed in detail in Section 6. Additionally, the
committee is incentivized to actively participate in the channel
with a small reward that each committee member gets when
they acknowledge a state update in the channel. This reward
can be given with a unidirectional channel [28], which does not
suffer of the problems BRICK solves. Moreover, the committee
members that participate in the closing state of the channel get
an additional reward, hence the committee is incentivized to
assist a party when closing in collaboration with the committee
is necessary.

Similarly to closing in BRICK, during auditing in BRICK+,
we incentivize the honest behavior of rational committee mem-
bers by giving them a reward (allocated by the auditor when
publishing the access request), which is delivered by the audit
smart contract when a committee member sends the correct
head of the hash-chain.

3.6 Protocol Goals
To define the necessary goals of BRICK, we first need to define
the necessary properties of a channel construction. Intuitively,
a channel construction should ensure similar properties with
blockchain systems i.e., a party cannot cheat another party par-
ticipating in the channel and any party has the prerogative to
eventually close the channel at any point in time. The first prop-
erty is encapsulated by Safety, while the second by Liveness.
Additionally, we define an optional property, Privacy, which is
not guaranteed in many popular blockchains, such as Bitcoin
[40] or Ethereum [52], but constitutes an important practical
concern for any functional monetary (cryptocurrency) system.
Furthermore, we define another optional property, Auditability,
which allows authorized third parties to audit the states of the
channel, thus making the channel construction suitable to be
used on a real currency. The first three properties are met by
BRICK, while the latter is only available in BRICK+.

First, we define some characterizations on the state of the
channel, namely, validity and commitment. Later, we define
the properties for the channel construction.

Each state of the channel has a discrete sequence number
that reflects the order of the state. We assume the initial state
of the channel has sequence number 1 and every new state has
a sequence number one higher than the previous state agreed
by all the parties of the channel. We denote by si the state with
sequence number i.

DEFINITION 1. A state of the channel, si , is valid if the
following hold:

• All parties on the channel have signed the state si .
• The state si is the freshest state, i.e. the previous valid

state was si−1.

• The committee has not invalidated the state. The commit-
tee can invalidate the state si if at least 2f +1 committee
members sign the state si−1 upon receiving a closing
request.

DEFINITION 2. A state of the channel is committed if it was
signed by at east 2f + 1 committee members or is part of a
block in the persistent part of the blockchain.

DEFINITION 3 (SAFETY). No channel will close in a state
other than the most fresh committed state.

DEFINITION 4 (LIVENESS). Any valid operation (update,
close) on the state of the channel will eventually 3 be committed
(or invalidated).

DEFINITION 5 (PRIVACY). No unauthorized 4 external (to
the channel) party learns about the state of the channel (eg. for
a payment channel, the current distribution of funds between
the channel parties) unless at least one of the parties initiate
the closing of the channel.

DEFINITION 6 (AUDITABILITY). All committed states of
the channel are verifiable by an authorized third party.

4 BRICK DESIGN
The protocol consists of three phases: Open, Update &
Consistent Broadcast, and Close. We assume the
existence of a smart contract (self-executed code run on a
blockchain). The BRICK smart contract has two functions,
Open and Close, that receive the inputs of the protocols and ver-
ify that they adhere to the abstractly defined protocols specified
below.

Algorithm 1 describes the first phase, Open, which is the
opening of a channel between m parties. In this phase, the
parties create the initial funding transaction, similarly to other
known payment channels such as [17, 44]. However, in BRICK

we also define three additional parameters during this phase;
we include to the funding transaction the hash of the public
keys of the committee members of the channel, denoted by
C1,C2, . . . ,Cn , the threshold t , and a closing fee F . This fee
will be awarded to the responsive committee members at the
last phase, Close, if and only if the closing of the channel is
done in collaboration with the committee. In this case, the
members that participated in signing the closing transaction
will be rewarded with the amount F divided by the number of
signatures from the committee members (2f + 1). In addition,
each committee member locks a capital in the BRICK smart
contract which will be claimed by the parties of the channel
during the phase Close if a committee member misbehaved
(e.g. received a bribe).

The second phase of the protocol consists of two sub-protocols,
Update (Protocol 2) and Consistent Broadcast (Pro-
tocol 3). Both algorithms are executed consecutively every time
a new update state occurs, i.e. when the state of the channel
changes. During Update, the parties of the channel agree on a
new state and create an announcement which they broadcast to
the committee members using Consistent Broadcast.

3Depending on the message delivery.
4Authorized parties are potential auditors of the channel, as described in BRICK+.
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Figure 2: Typical workflow of BRICK for a state update. (1) Alice and Bob agree on a new state update. (2) They individually
broadcast the update to the committee (with an associated fee). (3) When a threshold of committee members replies that the
broadcast update state is committed, each sender (Alice or Bob) executes this update as persistent.

Protocol 1: Open
Input: Channel parties P1, P2, . . . , Pm , committee

members C1,C2, . . . ,Cn , initial state s1 (m-order vector),
fee for the committee F .

Goal: Open a BRICK payment channel.

1. Every party P1, P2, . . . , Pm signs:
open(H (C1),H (C2), . . . ,H (Cn ), t , s1, F ).

2. Register to {M,σ (M)} the announcement of Protocol
Update(P1, P2, . . . , Pm , s1,null).

3. Execute Protocol Consistent
Broadcast(M,σ (M), P1, P2, . . . , Pm ,C1,C2, . . . ,Cn ).

4. Publish to the blockchain
σP1,P2, ...,Pm (open(H (C1),H (C2), . . . ,H (Cn ), t , F )).

The announcement is the hash of the new state (to preserve
privacy), as well as the sequence number, signed by all the
parties in the channel. This way all the parties commit to the
new update state of the channel, while none of the parties can
unilaterally close the channel without the collaboration of ei-
ther all other parties or the committee. At the same time the
state of the channel is not revealed to the committee, but in case
a party wants to close the channel, the committee members,
given the correct state, can verify this is the freshest update
state all parties have agreed to.

In Protocol 3, for every state update, each party sends to all
committee members the announcement including a small fee for
watching the channel. Then, each committee member replies
to every party that sent him the announcement by signing the
announcement, if no closing state is in progress. This signed
announcement can be used later to construct a proof-of-fraud
in case the committee member colludes with a party and signs
an older update state to close the channel.

The last phase of the protocol, Close, can be implemented
in two different ways: the first is similar to the classical ap-
proach for closing a channel (Protocol 4: Optimistic Close)
where all parties collectively sign the freshest update state (clos-
ing transaction) and publish it on the blockchain. However, in

Protocol 2: Update
Input: Channel parties P1, P2, . . . , Pm , current state s.
Goal: Create announcement M,σ (M) (cloaked state

signed by all parties).

1. Every party P1, P2, . . . , Pm signs: {H (si , ri ), i} = M ,
where ri is a random number and si the current state, thus
creating the announcement {M,σ (M)}.

Protocol 3: Consistent Broadcast
Input: Channel parties P1, P2, . . . , Pm , committee

members C1,C2, . . . ,Cn , announcement {M,σ (M)},
reward r .

Goal: Inform the committee of the new update state and
verify the validity of the new state.

1. Each party Pi broadcasts to all the committee members
C1,C2, . . . ,Cn the announcement {M,σ (M)} alongside a
reward r .

2. Each committee member Cj , upon receiving {M,σ (M)},
verifies that all parties’ signatures are present, the
sequence number is exactly one higher than the
previously stored sequence number and no party has
requested to execute the protocol Close on an earlier
state. Then, Cj stores the announcement {M,σ (M)}
(replacing the previous announcement), then signs M ,
(σCj (M)), and broadcasts it to every party Ai that payed
the reward r .

3. Each party Pi , upon receiving at least t signatures on the
announcement M , considers the state committed and
proceeds to state transition.

case some of the parties of the channel are not active or respond-
ing to sign the closing transaction a party can unilaterally close
the channel in collaboration with the committee of the channel.
In Protocol 5: Pessimistic Close, a party initiates the
last phase of the protocol by requesting the signatures of the
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Protocol 4: Optimistic Close

Input: Channel parties P1, P2, . . . , Pm , state s.
Goal: Close a channel on state s, assuming all parties are

responsive and in agreement.

1. A party p ∈ {P1, P2, . . . , Pm } broadcasts the request
close(s).

2. All parties P1, P2, . . . , Pm sign the state s (if they agree)
and broadcast the signed message to all other parties.

3. The party p (or any other party of the channel) publishes
the signed by all parties state, σP1,P2, ...,Pm (s) in the
blockchain.

committee members on the freshest state of the channel. The
committee members, upon receiving this request that includes
the state and the sequence number, verify this is the fresh-
est committed state and initiate a consensus protocol amongst
themselves (parties do not participate). If the consensus pro-
tocol terminates successfully, hence all committee members
agree that this is the freshest committed update state, each com-
mittee member signs the closing state and sends it to the party.
As soon as the party collects at least t signatures on the closing
state, he publishes to the blockchain the state with the multisig
(or threshold signature if the committee run a DKG at setup)
from the committee members. The Pessimistic Close
protocol has stronger assumptions and might have higher com-
munication complexity than the rest of the system as it needs
consensus to guarantee liveness, however it is only executed
when in dispute and does not affect the performance of the
common case.

5 BRICK SECURITY ANALYSIS
In this section, we prove that BRICK satisfies the protocol goals
as defined in Section 3.1, i.e. Safety, Liveness and Privacy.

THEOREM 1. BRICK achieves safety.

PROOF. We can safely assume that the channel will not
close in a state that is not committed when the committee is in-
volved, since the honest committee members will not recognize
and thus agree on such a state during consensus. Furthermore,
when the parties close the channel in collaboration the closing
state will eventually be committed by definition. Thus, to prove
safety for BRICK it is enough to show that a channel cannot
close in a committed state that is not the freshest.

In BRICK there are two ways to close a channel (phase
Close), either by invoking Protocol 4 or by invoking Protocol
5. In the first case (Optimistic Close), all parties agree
on closing the channel in a specific state (which is always the
freshest valid state 5). As long as this valid state is published in
a block in the persistent part of the blockchain, it is considered
to be committed. Thus, safety is guaranteed.

In the second case, when Protocol 5: Pessimistic Close
is invoked, a party has decided to close the channel unilater-
ally in collaboration with the committee. We will prove safety
5We assume that if the parties want to close the channel in a previous state,
they will still create a new state similar to the previous one but with an updated
sequence number.

Protocol 5: Pessimistic Close
Input: Party p ∈ {P1, P2, . . . , Pm }, committee members
C1,C2, . . . ,Cn , state si (m-order vector), random number
ri

Goal: Close a channel on state si with the assist of the
committee.

1. Party p broadcasts to the committee members
C1,C2, . . . ,Cn the request close(si ). He additionally
reveals to each committee member the public keys of all
committee members.

2. Each committee member verifies that {H (si , ri ), i} = M
(where M is the announcement the committee member
has stored). Then they input the final state update they
have seen together with M in a consensus round. If the
close is decided to be valid (ordered before any new
update) then everyCj signs the state si , σCj (si ) and sends
it to party p.

3. Party p, upon receiving t signatures from the committee
on the state si , publishes on the blockchain si with the t
signatures.

4. After the state is included in a (permanent) block, the
smart contract closes the channel in state si and each
committee member whose signature is published on the
blockchain gets a reward of F/t (reward locked in the
funding transaction).

by contradiction. Let us denote by si the closing state of the
channel. Suppose that there is a committed state sk such that
k > i, thus si is not the most fresh state agreed by all parties.
At least t = 2f + 1 committee members have signed the state
si , since otherwise the BRICK smart contract would not have
accepted the closing state as valid. According to the threat
model, at most n − t = f committee members are byzantine,
thus at least f + 1 honest committee members have signed
state si as the closing state. However, according to Protocol 5
(line 2) all honest committee members that follow the protocol
verify that M = {H (si , ri ), i} , where M is the announcement
the committee member have stored, i.e. the announcement that
corresponds to the freshest valid state she previously received,
and initiate a consensus process. Since si is a closing state, the
consensus terminated successfully for the state si . Therefore,
there are at least f + 1 honest committee members that con-
sider si the freshest committed state and thus have not received
the freshest valid update state. However, in phase Update &
Consistent Broadcast, an update state is considered to
be committed, according to Protocol 3 (line 3), if and only if
it has been signed by at least t = 2f + 1 committee members.
Since at most n − (f + 1) = 3f + 1 − f − 1 = 2f < 2f + 1
members of the committee have seen (and hence singed) the
state sk , the state sk is not committed. Contradiction. Therefore,
the closing state si is the freshest committed state. □

THEOREM 2. BRICK achieves liveness.

PROOF. We will show that every possible valid operation is
either committed or invalidated. There are two distinct opera-
tions: close and update.
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If the operation is close and is not committed, then either
the parties did not agree on this operation (Optimistic
Close), hence the operation is not valid or the consensus
did not end successfully. In the latter case, a concurrent valid
update state was published and the consensus (Pessimistic
Close) ordered the update operation first, thus invalidating
the close operation.

Suppose now the operation is close and never invalidated.
Then, if it is an optimistic close, all the parties in the channel
have signed the closing state since it is valid. Since the parties
are honest they will broadcast the transaction to the blockchain.
Assuming the blockchain has liveness, eventually the state will
be included in a block in the persistent part of the blockchain
and thus will be eventually committed.

Suppose the operation is a valid update and it was never
committed. Since the operation is valid and the parties of the
channel are honest, the committee members eventually received
the update state (Consistent Broadcast). However, the
update state was never committed, therefore at least f + 1 com-
mittee members did not sign the update state. We assumed
at most f byzantine committee members, hence at least one
honest committee member did not sign the valid update state.
According to Protocol 3 (line 2), an honest committee mem-
ber does specific verifications and if the verifications hold she
signs the new update state. Thus, for the honest committee
member that did not sign, one of the verifications failed. If the
first verification fails, then a signature from the parties of the
channel is missing thus the state is not valid. Contradiction. The
second verification concerns the sequence number and cannot
fail assuming the channel parties are honest. Thus, the third
verification fails, which means there is a request to execute
Close on an previous state. In this case, a consensus protocol
is executed according to Protocol 5, which orders the update
state and the closing state. One of the two gets committed and
the other invalidated. Since the update state was never commit-
ted, it was invalidated by the committee during the consensus
process.

For the last case, suppose the operation is a valid update
and it was never invalidated. We will show the update was
eventually committed. Suppose the negation of the argument
towards contradiction. We want to prove that an update state
that is not committed is either not valid or invalidated. The
reasoning of the proof is similar to the previous case with
minor modifications. □

THEOREM 3. BRICK achieves privacy.

PROOF. Suppose an external party learns about the state
of the channel during the protocol execution. This means that
either she intercepted a message (between the parties of the
channel or between the parties and the committee) or she is a
committee member. In the first case, we assume secure commu-
nication channels thus a computationally-bounded adversary
cannot get any information from the messages between the par-
ties. In the latter case, the committee members receive during
the Update & Consistent Broadcast phase a mes-
sage M = {H (si , ri ), i} for any valid update state (assuming
honest parties that do not intentionally reveal the state). If the
committee member extracts the state of the channel si from the

H (si , ri ), this means she reverted the hash function, hence the
hash function is not pre-image resistant for a computationally-
bounded adversary and thus not secure. This contradicts the
system model, where we assumed cryptographically-secure
hash functions. □

6 INCENTIVIZING HONEST BEHAVIOR
In this section, we design incentive mechanisms for rational
committee members to incentivize honest behavior. Addition-
ally, we argue for rational channel parties thus alleviating the
assumption that the participants of a channel are honest.

6.1 Incentivizing Rational Committee
Members

There are three different mechanisms in BRICK to incentivize
honest behavior for rational committee members. The first one
is a small fee that rewards the committee members that are re-
sponsive during the Update & Consistent Broadcast
phase. The second one is a final fee rewarded to the committee
members participating in the Close phase. Lastly, the third in-
centive mechanism has a different nature; committee members
lock collateral to ensure honest behavior (resistance to collud-
ing and bribing) is the dominant strategy for the rational part
of the committee (2f + 1). This way we guarantee the safety
of the channel construction even under a rational committee
(while allowing f byzantine members).

Update Rewards. In order to incentivize the responsiveness
of the committee members the parties establish an one-way
channel [28] where they send a small payment every time they
want a signature. At first sight, this game looks like a fair
exchange game, which is impossible to solve without a trusted
third party [21]. Furthermore, we cannot use a blockchain to
solve it [41] as the whole point of state channels is to reduce the
number of transactions that go on-chain. Fortunately, the state-
update game is a repeated game where committee members
want to increase their expected rewards in the long term. As
a result, they know that if they receive a micro-payment from
a party and do not respond, then the party will stop using
them (there is f fault tolerance in BRICK) and as a result their
expected rewards for the repeated game will decrease.

Close Rewards. The same fair exchange issue arises in the
Pessimistic Close protocol, which is not a repeated
game as the committee members know that closing is the last
action that happens in a channel. Thus, in this case we use the
blockchain to solve the fair exchange problem. Specifically, we
split the fee F , which was locked during phase Open (Protocol
1), only among the members of the committee that signed the
closing state in Protocol 5. In this phase, we assume rational
channel parties, hence the parties have no incentive to bribe
the committee to ignore a close request in a specific state since
such a strategy cannot increase somehow the parties’ profit.
Therefore, a committee member has the choice to either sign
the closing state and gain part of the extra fee or not. Since we
assume rational committee members that aim to increase their
expected profit, they will all sign the closing state (as long as
the fee is sufficient enough to cover their cost of being online).
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Committee Collateral. To enforce incentives for the commit-
tee, we demand each committee member to lock a collateral
strictly higher than the amount of money locked in the channel
divided by f + 1. To commit fraud, one of the parties can at-
tempt to bribe some (at least f + 1) members of the committee
to sign an older state and thus close the channel in a wrong state.
However, during the bribing procedure the committee member
must provide a signature on a previous than the freshest state.
This signature can construct a proof-of-fraud for the rest of the
channel parties, if broadcast by the bribing party. Specifically, a
proof-of-fraud consists of (a) the singed older state and (b) the
singed acknowledgment the same committee member sent to
the party when asked for the validity of the last freshest state
of the channel. These two messages ensure that the committee
member was aware that the channel state was updated and thus
intentionally committed fraud by signing an older state. Conse-
quently, the channel party can eventually claim the committee
member’s collateral when closing the channel on chain (includ-
ing this proof-of-fraud). If the collateral is strictly higher than
the amount of money locked in the channel divided by f + 1,
the party would gain more profit if he claims the collateral of all
misbehaving committee members than closing the channel in
any wrong state. Thus, any committee member will not provide
such a proof-of-fraud, and hence will not accept any bribes.

6.2 Rational Parties Assumption
For the security proofs, we assumed the parties of the channel
are honest. However, this assumption is not necessary. In this
section, we argue that a rational party will not deviate from the
protocol, thus the security of BRICK holds even under rational
channel parties. We argue for every phase separately.

Open. It is trivial to see that if a party is not incentivized to
open a channel then that channel will never be opened. We
assume the parties have some business interest to use the
blockchain and since transacting on channels is faster and
cheaper they will prefer it. Deviating from the protocol at this
phase is meaningless.

Update & Consistent Broadcast. During the ex-
ecution of Protocol 2, any party can deviate from the protocol
by not signing the hash of the new update state. In this case, the
new state will not be valid and thus cannot be committed and
will not be executed. No party can gain profit from such a be-
havior directly (attacking the safety of the channel). Moreover,
attempting to attack the liveness of the BRICK channel is not
profitable, since any other party can always request to close on
the previously committed state in collaboration with the com-
mittee by invoking Protocol 5: Pessimistic Close. Thus,
rational parties will not deviate from the Update protocol.

During the execution of Consistent Broadcast, a
party can deviate in the following ways:

• First, he can choose not to broadcast the announcement
to the committee or part of the committee. In this case,
the party has signed the new update state, which is now
a valid state and for the rest of the parties this state will
be considered committed after the execution of Protocol
3. Therefore, the only damage this party can do is to

himself: if the committee closes the channel in the pre-
vious state after the execution of the new update state,
he cannot construct a proof-of-fraud because he never
received the acknowledgment of the announcement from
the committee members. Hence, the party cannot prove
fraud and can potentially lose his money.

• Second, he can broadcast different messages to the com-
mittee or parts of the committee. During the execution
of Protocol 3, the committee members verify the parties’
signatures, thus an invalid message will not be acknowl-
edged from an honest committee member. If the mes-
sages are valid (all parties’ signatures are present), all
parties have misbehaved in collaboration. This can lead
in a permanent partition of the view of the committee
regarding the state history, but at most one of the states
can be committed (get the 2f + 1 signatures). Thus, this
strategy has the same caveats as the first one, where the
party can only lose from following it.

• Lastly, he can choose not to proceed to the state tran-
sition. This is outside the scope of the paper and is a
general problem of different nature (a fair exchange
problem).

Overall, a rational party cannot increase his profit by deviating
from Protocols 2 or 3.

Close. In this phase, there are two different options:
Optimistic Close and Pessimistic Close.
In the first case, a party can deviate from the protocol in the
following ways:

• He is the party requesting the closing of the channel in a
cheating state. At least one of the other parties will not
sign the state since at least one of the parties is being
cheated, else it would not be a cheating state. Thus,
safety is guaranteed and the party cannot profit from
this strategy, even if he colludes with some of the other
parties of the channel.

• He is the party requesting the closing of the channel and
he never publishes the signed closing state. In line 2 of
Protocol 4, the signed state is broadcast by all parties
to all other parties, hence another party will eventually
publish the closing state.

• He is a party that got the closing request and does not
sign the state. In this case, the party requesting to close
the channel can invoke the Pessimistic Close
protocol and close the channel in collaboration with
the committee in the freshest committed state.

Thus, any potential deviation from Protocol 4 cannot increase
the profit of a party executing the protocol.
In the second case, where Protocol 5 is executed, a party can
deviate from it in the following ways:

• The party requests to close the channel in a state si that
is not the freshest committed state. Then, the party’s re-
quest for close will be ignored by the rational committee
members (as explained in subsection 6.1) and thus he
will not be able to gather 2f + 1 signatures and close the
channel in a “wrong” state.
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• The party requests to close the channel on the freshest
committed state, gets the necessary signatures, but never
publishes the closing state (attempting to attack liveness
and potentially blackmail other parties). In this case, any
committee member has incentive to publish the signed
pessimistic close in order to claim the closing reward,
so the liveness of the channel is guaranteed. Hence, the
party cannot gain any profit from deviating from the
protocol in this step.

To summarize, if a channel party deviates from the honest
protocol execution at any phase, he cannot gain additional
profit. Therefore, any rational party will follow the protocol,
hence honest behavior of channel parties is incentivized.

7 BRICK+ DESIGN
BRICK+ consists, similarly to BRICK, of three phases, Open,
Update & Consistent Broadcast, and Close. How-
ever, BRICK+ has one additional functionality, audit, that al-
lows an authorized third party to audit the states of a channel.
Invoking this functionality though enforces the closing of the
channel 6. The audit functionality is illustrated in Figure 3 and
described in detail in Protocol 6. We assume the existence of
an audit smart contract that handles the fair exchange of the
reward for the responsive committee member, similarly to the
BRICK smart contact (for close).

To enable the audit functionality and therefore achieve Au-
ditability, we disable Protocol 4: Optimistic Close, and
enforce the parties to close in collaboration with the committee.
This way we guarantee that all states of the channel are avail-
able to the committee and hence to the potential auditor for
verification. Moreover, we modify Protocol 2 and Protocol 3
(phase Update & Consistent Broadcast) such that
the committee members store a hash-chain of the state history
instead of the hash of the freshest valid state they received. This
way we ensure that the parties cannot present an alternate state
history to the auditor as it achieves fork-consistency [36].

The audit functionality is initiated by an authorized third
party, namely the auditor, who publishes an access request on-
chain. Then, the parties of the channel verify the validity of
the access request and initiate the closing of the channel by
invoking Protocol 5: Pessimistic Close. After the exe-
cution of Protocol 5, both the honest committee members and
the (honest) parties of the channel have a consistent view of
the channel history. Every party sends to the auditor the entire
state history. Additionally, each committee member sends to
the smart contract the head of the hash-chain of the state history.
The smart contract, upon receiving 2f + 1 replicas of the hash,
sends the hash to the auditor and rewards these 2f + 1 com-
mittee members, similarly to the BRICK smart contract (phase
Close). The auditor then verifies the state history he received
from every party by computing the hash-chain and comparing
the last hash with the hash he received from the smart contract.
If the parties misbehave and send an alternate state history the
auditor can pursue external punishment (e.g. legal action).

6Closing the channel when an audit request occurs is not necessary, as long as
the committee simulates the closing process, i.e. the consensus on the last update
state, and inform the parties. However, to avoid confusion we assume that the
audit functionality enforces the closing of the channel.

Protocol 6: Audit
Input: Auditor A of channel c, audit smart contract with

access on the information published on the blockchain,
from Protocol 1.

Goal: Audit of the channel.

1. The auditor A publishes on the blockchain the access
request for channel c and locks rewards in the audit smart
contract.

2. Each party of the channel, upon verifying the validity of
the access request, initiates the closing phase of the
channel, i.e. invokes Protocol 5: Pessimistic
Close in the last committed phase.

3. After the execution of Protocol 5, the channel is closed
on-chain in a committed state s. Then, all parties of the
channel send to the auditor the state history and each
committee member sends to the audit smart contract the
head of the hash-chain of all committed states (where s is
the last committed state).

4. The smart contract upon receiving the same hash from
2f + 1 committee members (checks the identities with
the opening state), rewards the committee members that
were responsive, and publishes the hash on-chain.

5. The auditor receives the state history from all parties
and reads the hash from the audit smart contract, and
verifies the state history by re-creating the hash-chain. If
a party does not respond to the access request or presents
a different state history the auditor pursues external
punishment.

7.1 BRICK+ Security Analysis
In this section, we first prove the BRICK+ goals, namely Safety,
Liveness, Privacy and Auditability, under the assumption of
2f + 1 honest committee members and later we argue that
rational committee member will not deviate from the protocol.

Throughout this section, we assume the parties of the chan-
nel are rational players, thus they will not deviate from honest
behavior if they will be discovered and punished. Furthermore,
we assume the auditor is also rational, meaning he will deviate
from the protocol if he can gain more profit (hence the need for
a smart contract to do the fair exchange between the auditor and
the committee). However, he will not punish a party arbitrarily
with no proof, since he is supposed to be an external trusted
authority (e.g. judge, regulator, tax office etc.).

THEOREM 4. BRICK+ achieves safety.

PROOF. It follows from Theorem 1, since all modifications
on BRICK do not affect the safety property. □

THEOREM 5. BRICK+ achieves liveness.

PROOF. It follows from Theorem 2, since all modifications
on BRICK do not affect the liveness property. □

THEOREM 6. BRICK+ achieves privacy.

PROOF. The audit request, which is the first step of the audit
functionality, does not leak any information on the channel
since the auditor is an external to the channel party. According
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Figure 3: Typical workflow of BRICK+ for an audit update. (1) The auditor starts the audit by posting the request on chain,
(2) the committee closes the channel, and (3) the parties transfer the state to the auditor. Then (4), the committee posts the
head of the hash-chain of the channel on-chain to claim their reward and finally (5) the auditor cross-checks the claims of
the party and the committee.

to Protocol 6 (line 2), the parties initiate the closing of the
channel. Thus, privacy is preserved since by definition it is only
guaranteed until at least one of the parties initiates the closing
of the channel. □

THEOREM 7. BRICK+ achieves auditability.

PROOF. Since the parties of the channel are rational they
will not initiate the closing process (Protocol 6, line 2) unless
the request for access is valid, hence the auditor is authorized.
Thus, to prove BRICK+ satisfies auditability, it is enough to
prove that every committed state is verifiable by a third-party.

Towards contradiction, suppose s is the earliest (least fresh)
committed state that is not verifiable (since there is at least one).
This means that either state s does not exist or it is replaced
by another state s ′ either in the state history of all the parties
or in the hash-chain that produced the hash head provided by
the 2f + 1 honest committee members. If s is not part of the
hash-chain (latter case), but it is committed then there is a
quorum of 2f +1 committee members that produced a different
hash-chain and thus a different head, therefore there are at
least f + 1 byzantine committee members. Contradiction to
our threat model. Thus, the state s is not included in the state
history by all parties. In this case, the auditor punishes the
parties (externally). And since we assume the parties of the
channel are rational (and the external punishment exceeds the
potential gain of cheating) they will not provide an alternate
state history. Thus, every committed state is verifiable. □

7.2 Incentivizing honest behavior
To complete the proofs under the assumption of a rational
committee, we need to show that the 2f + 1 rational committee
members will provide the auditor the correct head of the hash-
chain. Similarly to previously stated arguments in section 6.1,
in case a member of the committee attempts to change the
hash-chain during the Pessimistic Close, any channel
party can construct a proof of fraud and claim the collateral of
the committee member. Thus, any rational committee member

will not attempt to commit fraud, since her loss overcomes her
potential gain from bribing (from a channel party).

In addition, we incentivize the committee members to actu-
ally send the head of the hash-chain (participate) by rewarding
them via the BRICK+ smart contract. This way we also enforce
the auditor to pay the rewards he has committed in the smart
contract to the responsive committee members.

8 EVALUATION OF PRIMITIVES
We have implemented consistent broadcast and consensus in
Golang using the Kyber [34] cryptographic library and the
cothority [18] framework. In Table 1 we evaluate our protocols
on Deterlab [19] using 36 physical machines, each having four
Intel E5-2420 v2 CPUs and 24 GB RAM and being arranged in
a star-shaped virtual topology. In order to have a realistic wide
area network we impose a 200ms roundtrip latency on the links
between committee members and a 35Mbps bandwidth limit.

As illustrated the overhead of using a committee is around
0.1 seconds, while the close can take between 0.7 and 10 sec-
onds depending both on the size of the committee and the size
of the state. These numbers are acceptable compared to the
latency of current blockchains, especially since channels are
independent and embarrassingly parallel, meaning that we can
deploy as many as we want without increasing the overhead.

9 RELATED WORK
Payment channels were originally introduced by Spilman [50],
as a unidirectional off-chain solution, meaning that the sender
can send to the receiver incremental payments off-chain via
the channel, as long as the sender has enough capital on the
channel. Later, bidirectional channels were introduced indepen-
dently by Poon et al. [44] with Lightning Network, and Decker
and Wattenhofer [17] with Duplex Micropayment Channels.
Bidirectional channels allowed the capital locked in the channel
to be moved in both directions from sender to receiver and back,
like in a row of an abacus. All these solutions though require
timelocks to guarantee safety, and thus make strong synchrony
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Table 1: Evaluation of Primitives used by BRICK and BRICK+

Committee Size 4 34 151

Consistent Broadcast 0.1138 sec 0.118 sec 0.1338 sec

ByzCoin Consensus (State Size: 500B) 0.643 sec 1.927 sec 1.949 sec

ByzCoin Consensus (State Size: 1MB) 1.985 sec 6.34 sec 10.7 sec

assumptions which sometimes fail in practice. BRICK, on the
other hand, is the first bidirectional channel solution that does
not require timelocks and operates under full-asynchrony.

Another safety requirement of the original payment channel
proposals is that the participants of a channel are obligated to
be constantly online and actively watching the blockchain. To
address this issue, recent proposals introduce third-parties in
the channel to act as proxies for the participants of the channel
in case of fraud. This idea was initially discussed by Dryja [20],
who introduced third-parties on Lightning channels, known as
Monitors or Watchtowers [1]. Later, Avarikioti et al. [5] pro-
posed a less centralised distributed protocol for the Watchtower
service, where every full node can act as a Watchtower for
multiple channels depending on the network topology. In paral-
lel, McCorry et al. [37] proposed Pisa, a protocol that enables
the delegation of Sprites [39] channels’ safety to third-parties
called Custodians. Simultaneously, Celer Network [46] pro-
posed the State Guardian Network, a side chain that safeguards
the off-chain transactions for a specific period of time when
requested by a channel party. Similarly to these works, BRICK

presents the committee who acts as a proxy for the parties of the
channel. However, in this work the committee is more powerful
than in the aforementioned works, since the protocol requires a
fraction of responsive rational committee members to operate
correctly. Furthermore, in contrast to previous work, the role of
the third parties in BRICK (and BRICK+) is proactive instead of
retroactive, because the committee’s approval is needed before
the parties of a channel execute a transaction.

Payment channels are specifically-tailored solutions that sup-
port only payments between users. This is quite limiting due to
the emergence of smart contracts [51] that allow for arbitrary
operations and computations. For this purpose, State channels
were introduced [39], which are a generalized version of pay-
ment channels, with application on blockchain systems that
support smart contracts. Recently, multiple state channel con-
structions have emerged, but they mainly focus on the routing
problem of channel networks. In particular, Sprites [39] im-
prove on the worst-case delay for releasing the collateral of
the intermediate nodes on the payment network for multi-hop
payments. In parallel, Perun [22] proposes a virtual payment
hub, where every party can connect to and hence establish a
“virtual channel” with any other party connected to the hub. In a
similar manner, Counterfactual [13] presents “meta-channels”,
which are generalized state channels (not application-specific)
with the same functionality as “virtual channels”. However,
all these constructions use the same foundations, i.e. the same
concept on the operation of two-party channels. And as the fun-
damental channel solutions are flawed the whole construction

inherits the same problems (synchrony and availability assump-
tions). In contrast, BRICK presents an alternative fundamental
state channel solution that does not suffer from synchrony and
availability assumptions to ensure safety and thus can be used
as the foundation in all these constructions to alleviate their
shortcomings.

10 CONCLUSION
BRICK is the first off-chain construction that operates securely
under full-asynchrony. Furthermore, BRICK does not require
online participants that maintain the blockchain to ensure safety.
Instead, BRICK allows the parties of the channel to go offline
and introduces a committee that acts as a proxy for the parties of
the channel. To effectively remove timelocks, and thus achieve
security under full asynchrony, the committee acts proactively,
and guarantees that fraud cannot occur instead of acting upon
the case of fraud. Overall, BRICK guarantees no fraud will
occur (safety), and that the channel can be closed or updated
at any time (liveness). Moreover, BRICK guarantees privacy,
since all unauthorized external to the channel parties cannot
learn any information on the state of the channel during the life
of the channel.

In addition, we present BRICK+, a modification of the the
main channel construction, that enables auditability of the
channel by an authorized third-party. This functionality makes
BRICK suitable for real world use where regulators can request
access to the states of the channel. BRICK+ also maintains all
previously stated properties, safety, liveness and privacy.

The security analysis of both BRICK and BRICK+ is done
under the assumption that at most f out of 3f + 1 committee
members are malicious and the rest are honest, while the par-
ticipants of the channel are also considered honest. However,
we later present incentive mechanisms, rewards and collateral,
to guarantee the honest behavior of both the committee and the
parties of the channel.

We evaluate the primitives used in BRICK and BRICK+,
i.e. consistent broadcast and consensus. Specifically, we show
that the overhead of using a committee is approximately 0.1
seconds per update, and can reach up to 10 seconds during the
closing of the channel when both the size of the channel state
and the committee are large.
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A SYCHRONOUS DISTRIBTUED KEY
GENERATION

We assume the existence of n servers participating in the DKG
and each of them is in possession of a private-public key pair.
The list of public keys is publicly known. The Pedersen DKG
assumes the existence of a private channel between any pairs of
participants and a broadcast channel available to all participants.
Furthermore, this DKG scheme works in a synchronous setting,
where an upper bound on the communication delay is fixed
and known in advance. While this may be restrictive in today’s
global Internet era, a sufficient large timeout can simulate such
synchrony. If such a synchrony assumption is too strong, Aniket
et al. [30] provides a partially synchronous DKG variant, that
can substitute the one described below.
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We assume the existence of a cyclic group G of prime order
p and of a generator G of G.

Key Generation: The protocol follows several steps in order
to securely generate a distributed key:

(1) Each party Pi chooses a random polynomial fi (z) over
Z∗p of degree t :

fi (z) = ai0 + ai1 ∗ z + · · · + ait ∗ zt

(2) Each Pi computes the individual secret shares si j = fi (j)
mod p for all j ∈ {1, . . . ,n} and sends si j to party Pj us-
ing a confidential point-to-point channel. We denote ai0
by xi , the individual secret contribution to the distributed
private key.

(3) Each Pi broadcasts the commitment to the coefficients
Aik = Gaik for all k ∈ {0, . . . ,k} to all other partici-
pants. We denote Ai0 by Xi , the individual public con-
tribution to the distributed public key.

(4) Each Pj verifies the share received from the other parties
by checking, for all i ∈ {1, . . . ,n}:

Gsi j =

t∏
k=0

(Aik )j
k

mod p (1)

If the check fails for an index i, Pj broadcasts a com-
plaint against Pi .

(5) For each complaining party Pj , party Pi reveals the cor-
responding share si j matching (1). If any of the revealed
shares fails this equation, Pi is disqualified. We define
the set QUAL to be the set of non-disqualified parties.

(6) The public key is defined as X =
∏

i ∈QUAL Xi . Each
party Pj sets his share of the secret to x j =

∑
i ∈QUAL si j

mod p. The public verification values are computed as
Ak =

∏
i ∈QUAL Aik . The distributed secret key is de-

fined as x =
∑t
i ∈QUAL x j ∗ λi , where λi is the i-th

Lagrange coefficient.
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